The SOS-Water Project endeavours to set out the boundaries within which the Earth’s capacity to provide life-support systems for humanity is not endangered, and humanity’s capacity to adapt to environmental changes is not overburdened. Crossing such thresholds or tipping points in the complex Earth system could result in abrupt and irreversible ecological change. To safeguard a reliable and sufficient water supply for humans and ecosystems in the future, it is therefore essential to define an SOS for global water resources under changing conditions. At the same time, for practical decision making, it is crucial that a consistent framework and indicator set can be applied across spatial scales and for different river basins. The SOS-Water project aims to develop a framework for holistic assessment of water resources that meets these requirements.
Water resources around the globe are under increasing stress. Among other factors, climate change, rising food and energy demand, and improving living standards have led to a six-fold increase in global water withdrawals over the last century, with significant consequences for water quality and availability, ecosystem health, biodiversity, as well as social stability.
By advancing and linking water system models with models from sectors such as agriculture and energy, biodiversity, or sediment transport, the SOS-Water Project aims to lay the foundations for a holistic assessment framework of water resources across spatial scales. Based on five case studies of river basins in Europe and Vietnam – the Jucar River Basin in Spain, the Upper Danube region, the Danube and Rhine River deltas, and the Mekong River Basin – an interdisciplinary team of researchers from ten institutions across eight countries will develop a multidimensional SOS for water. The framework will enable the assessment of feedback loops and trade-offs between different dimensions of the water system and help address pressing global, regional, and local challenges.
In addition to going beyond state-of-the-art water systems modeling, the project will develop a comprehensive set of indicators to assess and monitor the environmental, social, and economic performance of water systems. The participating researchers will collaborate with regional and local authorities, water user representatives, non-governmental organizations, and citizens to co-create future scenarios and water management pathways. By streamlining water planning at different levels, it can be ensured that water allocation among societies, economies, and ecosystems will be economically efficient, socially fair, and resilient to shocks.
In partnership with project lead IIASA and partners such as Utrecht University and EAWAG, FutureWater is responsible for several tasks under the work package that looks to improve upon existing Earth Observation technologies for monitoring the performance of water systems. New applications will be developed and tested in the context of the SOS-Water case study basins of the Mekong and Jucar rivers.
For more information about the project visit the official website.
Related publications
2024 - Technical report
Satellite-based Water Productivity of dominant croplands in the Jucar River Basin (Spain) by local implementation of WaPOR algorithm
Fernández-Rodríguez, A., S. Contreras, G. Simons